Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.688
1.
Food Res Int ; 186: 114319, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729690

The "outstanding and unique aged aroma" of Chinese Chenxiang-type baijiu (CXB)-Daoguang 25 (DG25) mainly originates from a "extraordinary storage technology" of Mujiuhai (a wooden container), so it is mysterious and interesting. In this study, an untargeted GC/MS-based metabolomics was used to reveals the volatile differential metabolites for discriminating six different vintages of DG25 combing with chemometrics. A total of 100 volatile metabolites (including unknowns) were extracted and identified, including esters (41%), alcohols (10%) and acids (7%) so on. Finally, 33 differential metabolites were identified as aging-markers. Among them, 25 aging-markers showed a downtrend, including 17 esters such as ethyl acetate, ethyl hexanoate and ethyl palmitate so on. Moreover, it was interesting and to further study that furans showed a significant downtrend. Statistically speaking, ethyl benzoate played an important role in discriminating vintage of 1Y and 3Y, and the other 24 differential metabolites with downtrend discriminating the unstored (0Y-aged) DG25. Eight differential metabolites, such as ethyl octanoate, benzaldehyde, 3-methylbutanol and 1,1-diethoxyaccetal so on increased during aging of DG25, and they played a statistical role in discriminating the 5Y-, 10Y- and 20Y-aged DG25. This study provides a theoretical basis way for the formation mechanism of aging aroma for CXB.


Gas Chromatography-Mass Spectrometry , Metabolomics , Odorants , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Odorants/analysis , Wine/analysis , Alcoholic Beverages/analysis
2.
Food Res Int ; 186: 114379, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729702

The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.


Altitude , Metabolomics , Tea , Volatile Organic Compounds , Tea/chemistry , Volatile Organic Compounds/analysis , Humans , Odorants/analysis , Taste , Antioxidants/analysis , Camellia sinensis/chemistry , Amino Acids/analysis , Flavonoids/analysis , Male , China , Female
3.
Food Res Int ; 186: 114401, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729704

Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.


Electronic Nose , Fermentation , Spectroscopy, Near-Infrared , Taste , Tea , Tea/chemistry , Tea/microbiology , Spectroscopy, Near-Infrared/methods , Odorants/analysis , Chemometrics/methods , Humans , Fungi/metabolism , Machine Learning , Volatile Organic Compounds/analysis
4.
Food Res Int ; 186: 114332, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729715

The protein instability with haze formation represents one of the main faults occurring in white and rosé wines. Among the various solutions industrially proposed, aspergillopepsin I (AP-I) supplementation coupled with must heating (60-75 °C) has been recently approved by OIV and the European Commission for ensuring protein stability of wines. This study investigates the impact of AP-I either applied independently or in combination with flash pasteurization on the chemical composition of grape must and wines derived from Sauvignon Blanc and Gewürztraminer. The efficacy on protein stability of a complete treatment combining heat (70 °C) and AP-I (HP) was confirmed through heat test and bentonite requirement, although no differences were observed between must heating and HP treatments. However, high-performance liquid chromatography analysis of unstable pathogenesis-related proteins revealed that AP-I supplementation reduced chitinases and thaumatin-like proteins compared to the non-enzymed samples, with and without must heating. Amino acid increase was reported only in HP musts, particularly in Sauvignon Blanc. The concentration of yeast-derived aroma compounds in Gewürztraminer wines was increased by must heating; compared to controls, flash pasteurization rose the overall acetate esters content of 85 % and HP of 43 %, mostly due to isoamyl acetate. However, heat treatments -with or without AP-I- reduced terpenes up to 68 %. Despite the different aroma profiles, no differences were observed for any descriptor for both varieties in wine tasting, and only a slight decrease trend was observed for the floral intensity and the typicality descriptors in heated wines.


Hot Temperature , Odorants , Pasteurization , Vitis , Wine , Wine/analysis , Pasteurization/methods , Vitis/chemistry , Odorants/analysis , Food Handling/methods , Protein Stability
5.
Food Res Int ; 186: 114377, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729733

To clarify the relationship between microorganisms and physicochemical indicators of Xuanwei ham. Six ham samples for the first, second and third year were selected, respectively. The changes of physicochemical properties, the free fatty acids and microbial communities of Xuanwei ham were investigated by GC-MS and high-throughput sequencing technology. Results showed that scores of colour, overall acceptability, texture, taste and aroma were the highest in the third year sample. With increasing ripening time, moisture content, water activity (Aw), lightness (L*), springiness, and resilience decreased continuously, and yellowness (b*) was the highest in the second year sample. 31 free fatty acids were detected, and unsaturated fatty acids such as palmitoleic acid, oleic acid, and linoleic acid were the major fatty acids. The content of palmitoleic acid, oleic acid and eicosenoic acid increased significantly during processing. At the phylum level, the dominant bacteria were Proteobacteria and Firmicutes, and fungi were Ascomycota. At the genus level, the dominant bacteria were Staphylococcus and Psychrobacter, and fungi were Aspergillus. Correlation analysis showed that water content and Aw were closely related to microorganisms, and most unsaturated fatty acids were significantly correlated with microorganisms. These findings showed that microorganisms played an important role in the quality of Xuanwei ham, and provided a scientific basis for the quality control of Xuanwei ham.


Meat Products , Animals , Meat Products/microbiology , Meat Products/analysis , Food Microbiology , Bacteria/classification , Microbiota , Food Handling/methods , Swine , Taste , Fatty Acids, Unsaturated/analysis , Color , Gas Chromatography-Mass Spectrometry , Pork Meat/microbiology , Pork Meat/analysis , Odorants/analysis , Fatty Acids, Nonesterified/analysis , Fatty Acids, Monounsaturated
6.
Food Res Int ; 186: 114397, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729739

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Glucose , Lysine , Maillard Reaction , Odorants , Oxidation-Reduction , Sesame Oil , Sesame Oil/chemistry , Glucose/chemistry , Odorants/analysis , Lysine/chemistry , Phenols/chemistry , Benzodioxoles
8.
Elife ; 122024 May 15.
Article En | MEDLINE | ID: mdl-38747258

In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.


Vomeronasal Organ , Animals , Vomeronasal Organ/physiology , Mice , Male , Female , Odorants/analysis , Pheromones/urine , Pheromones/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains
9.
Biol Lett ; 20(5): 20230595, 2024 May.
Article En | MEDLINE | ID: mdl-38747684

The mechanisms whereby environmental experiences of parents are transmitted to their offspring to impact their behaviour and fitness are poorly understood. Previously, we showed that naive Bicyclus anynana butterfly larvae, whose parents fed on a normal plant feed but coated with a novel odour, inherited an acquired preference towards that odour, which had initially elicited avoidance in the naive parents. Here, we performed simple haemolymph transfusions from odour-fed and control-fed larvae to naive larval recipients. We found that larvae injected with haemolymph from odour-fed donors stopped avoiding the novel odour, and their naive offspring preferred the odour more, compared to the offspring of larvae injected with control haemolymph. These results indicate that factors in the haemolymph, potentially the odour molecule itself, play an important role in odour learning and preference transmission across generations. Furthermore, this mechanism of odour preference inheritance, mediated by the haemolymph, bypasses the peripheral odour-sensing mechanisms taking place in the antennae, mouthparts or legs, and may mediate food plant switching and diversification in Lepidoptera or more broadly across insects.


Butterflies , Hemolymph , Larva , Odorants , Animals , Butterflies/physiology , Larva/physiology , Learning
10.
Environ Monit Assess ; 196(6): 550, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743156

Odor pollution, also referred to as odor nuisance, is a growing environmental concern that is significantly associated with mental health. Once emitted into the air, the concentration of odorous substances varies considerably with wind conditions, leading to difficulties in timely sampling. In the present study, we employed selected ion flow tube mass spectrometry (SIFT-MS) to measure 22 odor-producing molecules continuously in an urban-rural complex city. In addition, we applied statistical analyses, principal component analysis (PCA), and a conditional probability function (CPF) to the datasets obtained from SIFT-MS to identify the odor characteristics at two study sites. At site A, odorants related to livestock farming and industry showed high factor loadings on principal components (PCs) from the PCA. In contrast, we estimated that the odorous gaseous chemicals affecting site B were closely related to sewage treatment and municipal solid waste disposal. Similar CPF patterns of grouped substances from the PCA supported the association between potential odor sources and specific odorants at site B, which helped estimate possible source locations. Consequently, our findings indicate that continuous monitoring of odorous substances using SIFT-MS can be an effective way to provide sufficient information on odor-producing molecules, leading to the clear identification of odor characteristics despite the high variability of odorous substances.


Air Pollutants , Environmental Monitoring , Mass Spectrometry , Odorants , Principal Component Analysis , Odorants/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Mass Spectrometry/methods , Air Pollution/statistics & numerical data
11.
J Agric Food Chem ; 72(19): 11051-11061, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698723

Multiple analytical methodologies allow quantitation of H2S and methanethiol (MeSH) in wine, but confirmation that the determined concentrations are related to perceived off-aromas, or "reductive" faults, is yet to be provided. Fifty white wines underwent sensory evaluation and measurement of free and salt-treated H2S and MeSH concentrations by gas chromatography with sulfur chemiluminescence detection and/or gas detection tubes. The determined concentrations were compared across techniques and different analysis laboratories. Sulfhydryl off-odors in the wines were best described by boiled and rotten egg and natural gas/sewerage/durian aroma attributes. The wines with the highest ratings for both aromas had high concentrations of free H2S, free MeSH, and/or salt-treated MeSH but were unrelated to salt-treated H2S. The free sulfhydryl concentrations and their associated aromas appeared to be suppressed by specific Cu fractions in the wines. This study provides evidence of the relevant measures of reductive aroma compounds and their relation to off-odors and Cu fractions.


Copper , Odorants , Sulfhydryl Compounds , Wine , Wine/analysis , Odorants/analysis , Sulfhydryl Compounds/analysis , Humans , Copper/analysis , Chromatography, Gas/methods , Taste , Hydrogen Sulfide/analysis , Female , Male , Adult , Oxidation-Reduction , Middle Aged , Smell , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
12.
J Agric Food Chem ; 72(19): 11072-11079, 2024 May 15.
Article En | MEDLINE | ID: mdl-38699886

Gouda-type cheeses were produced on a pilot-scale from raw milk (RM-G) and pasteurized milk (PM-G). Sixteen key aroma compounds previously characterized by the sensomics approach were quantitated in the unripened cheeses and at five different ripening stages (4, 7, 11, 19, and 30 weeks) by means of stable isotope dilution assays. Different trends were observed in the formation of the key aroma compounds. Short-chain free fatty acids and ethyl butanoate as well as ethyl hexanoate continuously increased during ripening but to a greater extent in RM-G. Branched-chain fatty acids such as 3-methylbutanoic acid were also continuously formed and reached a 60-fold concentration after 30 weeks, in particular in PM-G. 3-Methylbutanal and butane-2,3-dione reached a maximum concentration after 7 weeks and decreased with longer ripening. Lactones were high in the unripened cheeses and increased only slightly during ripening. Recent results have shown that free amino acids were released during ripening. The aroma compounds 3-methylbutanal, 3-methyl-1-butanol, and 3-methylbutanoic acid are suggested to be formed by microbial enzymes degrading the amino acid l-leucine following the Ehrlich pathway. To gain insight into the quantitative formation of each of the three aroma compounds, the conversion of the labeled precursors (13C6)-l-leucine and (2H3)-2-keto-4-methylpentanoic acid into the isotopically labeled aroma compounds was studied. By applying the CAMOLA approach (defined mixture of labeled and unlabeled precursor), l-leucine was confirmed as the only precursor of the three aroma compounds in the cheese with the preferential formation of 3-methylbutanoic acid.


Cheese , Milk , Odorants , Pasteurization , Volatile Organic Compounds , Cheese/analysis , Animals , Milk/chemistry , Milk/metabolism , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Cattle
13.
J Agric Food Chem ; 72(19): 11062-11071, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700435

Gouda cheese was produced from pasteurized milk and ripened for 30 weeks (PM-G). By application of gas chromatography/olfactometry and an aroma extract dilution analysis on the volatiles isolated by extraction/SAFE distillation, 25 odor-active compounds in the flavor dilution (FD) factor range from 16 to 4096 were identified. Butanoic acid, 2- and 3-methylbutanoic acid, and acetic acid showed the highest FD factors, and 2-phenylethanol, δ-decalactone, and δ-dodecalactone were most odor-active in the neutral-basic fraction. Quantitations by stable isotope dilution assays followed by a calculation of odor activity values (OAVs) revealed acetic acid, 3-methylbutanoic acid, butanoic acid, and butane-2,3-dione with the highest OAVs. Finally, an aroma recombinate prepared based on the quantitative data well agreed with the aroma profile of the PM-G. In Gouda cheese produced from raw (nonpasteurized) milk (RM-G), qualitatively the same set of odor-active compounds was identified. However, higher OAVs of butanoic acid, hexanoic acid, and their corresponding ethyl esters were found. On the other hand, in the PM-G, higher OAVs for 3-methylbutanoic acid, 3-methylbutanol, 3-methylbutanal, and butane-2,3-dione were determined. The different rankings of these key aroma compounds clearly reflect the aroma differences of the two Gouda-type cheeses. A higher activity of lipase in the RM-G and higher amounts of free l-leucine in PM-G on the other side were responsible for the differences in the concentrations of some key aroma compounds.


Cheese , Milk , Odorants , Olfactometry , Pasteurization , Volatile Organic Compounds , Cheese/analysis , Milk/chemistry , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Animals , Flavoring Agents/chemistry , Cattle , Gas Chromatography-Mass Spectrometry , Humans , Taste
14.
Science ; 384(6696): 652-660, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723089

Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.


Somatosensory Cortex , Vibrissae , Animals , Somatosensory Cortex/physiology , Somatosensory Cortex/growth & development , Mice , Vibrissae/physiology , Animals, Newborn , Odorants , Smell/physiology , Olfactory Cortex/physiology , Mice, Inbred C57BL , Sensory Deprivation/physiology , Nose/physiology , Nose/anatomy & histology
15.
Sci Rep ; 14(1): 10124, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698114

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Copper , Fermentation , Hydrogen Sulfide , Metallothionein , Odorants , Saccharomyces cerevisiae , Vitis , Wine , Wine/analysis , Copper/metabolism , Vitis/microbiology , Saccharomyces cerevisiae/metabolism , Hydrogen Sulfide/metabolism , Odorants/analysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sulfites/pharmacology , Pest Control/methods
16.
PLoS One ; 19(5): e0302496, 2024.
Article En | MEDLINE | ID: mdl-38709760

Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.


Aedes , Flowers , Receptors, Odorant , Volatile Organic Compounds , Animals , Aedes/physiology , Aedes/metabolism , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Female , Male , Yellow Fever/transmission , Odorants/analysis , Plants/metabolism , Plants/chemistry
17.
Sci Rep ; 14(1): 10369, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710748

Emotions experienced within sleep mentation (dreaming) affect mental functioning in waking life. There have been attempts at enhancing dream emotions using olfactory stimulation. Odors readily acquire affective value, but to profoundly influence emotional processing, they should bear personal significance for the perceiver rather than be generally pleasant. The main objective of the present sleep laboratory study was to examine whether prolonged nocturnal exposure to self-selected, preferred ambient room odor while asleep influences emotional aspects of sleep mentation and valence of post-sleep core affect. We asked twenty healthy participants (12 males, mean age 25 ± 4 years) to pick a commercially available scented room diffuser cartridge that most readily evoked positively valenced mental associations. In weekly intervals, the participants attended three sessions. After the adaptation visit, they were administered the odor exposure and odorless control condition in a balanced order. Participants were awakened five minutes into the first rapid eye movement (REM) stage that took place after 2:30 a.m. and, if they had been dreaming, they were asked to rate their mental sleep experience for pleasantness, emotional charge, and magnitude of positive and negative emotions and also to evaluate their post-sleep core affect valence. With rs < 0.20, no practically or statistically significant differences existed between exposure and control in any outcome measures. We conclude that in young, healthy participants, the practical value of olfactory stimulation with self-selected preferred scents for enhancement of dream emotions and post-sleep core affect valence is very limited.


Dreams , Emotions , Odorants , Humans , Male , Adult , Female , Dreams/physiology , Dreams/psychology , Young Adult , Emotions/physiology , Sleep/physiology , Smell/physiology , Sleep, REM/physiology , Wakefulness/physiology
18.
Brain Behav ; 14(5): e3524, 2024 May.
Article En | MEDLINE | ID: mdl-38702902

INTRODUCTION: The combination of apolipoprotein E ε4 (ApoE ε4) status, odor identification, and odor familiarity predicts conversion to mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS: To further understand olfactory disturbances and AD risk, ApoE ε4 carrier (mean age 76.38 ± 5.21) and ε4 non-carrier (mean age 76.8 ± 3.35) adults were given odor familiarity and identification tests and performed an odor identification task during fMRI scanning. Five task-related functional networks were detected using independent components analysis. Main and interaction effects of mean odor familiarity ratings, odor identification scores, and ε4 status on network activation and task-modulation of network functional connectivity (FC) during correct and incorrect odor identification (hits and misses), controlling for age and sex, were explored using multiple linear regression. RESULTS: Findings suggested that sensory-olfactory network activation was positively associated with odor identification scores in ε4 carriers with intact odor familiarity. The FC of sensory-olfactory, multisensory-semantic integration, and occipitoparietal networks was altered in ε4 carriers with poorer odor familiarity and identification. In ε4 carriers with poorer familiarity, connectivity between superior frontal areas and the sensory-olfactory network was negatively associated with odor identification scores. CONCLUSIONS: The results contribute to the clarification of the neurocognitive structure of odor identification processing and suggest that poorer odor familiarity and identification in ε4 carriers may signal multi-network dysfunction. Odor familiarity and identification assessment in ε4 carriers may contribute to the predictive value of risk for MCI and AD due to the breakdown of sensory-cognitive network integration. Additional research on olfactory processing in those at risk for AD is warranted.


Apolipoprotein E4 , Magnetic Resonance Imaging , Humans , Female , Male , Aged , Apolipoprotein E4/genetics , Olfactory Perception/physiology , Smell/physiology , Recognition, Psychology/physiology , Aged, 80 and over , Cognitive Dysfunction/physiopathology , Odorants , Alzheimer Disease/physiopathology , Alzheimer Disease/genetics , Heterozygote , Brain/diagnostic imaging , Brain/physiopathology
19.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731439

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Amino Acids , Arachis , Gas Chromatography-Mass Spectrometry , Odorants , Peanut Oil , Amino Acids/analysis , Amino Acids/chemistry , Arachis/chemistry , Odorants/analysis , Peanut Oil/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Flavoring Agents/analysis , Pyrazines/chemistry , Pyrazines/analysis , Solid Phase Microextraction , Taste , Hot Temperature
20.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731535

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Antioxidants , Fermentation , Fragaria , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Fragaria/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Odorants/analysis , Phenols/analysis , Flavonoids/analysis , Fruit/chemistry , Color
...